PMZ — Shunyata Research digital cables are produced using a Precision Matched Impedance cable geometry. This means that tolerances of the conductor surface, dielectric extrusion, and the precision of the braided shield are held to minute variances. To achieve these tight tolerances, the extrusion and braiding machines must be run at one-quarter speed during the manufacturing process. The result is better performance through a reduction of cable-induced signal jitter.
(Z definition = impedance)
ArNi® wire was designed by Shunyata Research to be the finest quality wire available. It begins with the highest purity of copper and silver metals available, including Ohno (single crystal), PCOCC silver and OFE C0101 conductors. Fluorocarbon dielectrics, usually only found in aerospace applications that have exceptional electrical characteristics including extremely low dielectric absorption, high dielectric strength and superb heat resistance. When used in digital wiring it significantly reduces transient energy storage and release which affects phase noise performance.
— And finally every cable undergoes our proprietary KPIP™ process.
TAP/CMODE Hybrid Module — For the purest signal possible, Shunyata Research has merged its patent pending TAP technology and CMODE filter into a single hybrid module. The TAP polarizer reduces electromagnetic signal polarization while the CMODE filter reduces common-mode noise that travels across all conductors. The combination delivers an analog like ease and a palpable background silence that closes the gap between digital and analog systems.
— Patent Pending —
Telegartner — The Telegartner ethernet connector are made in Germany and they performed best in our battery of laboratory tests. Their full metal construction provides shielding between conductor-pairs and eliminate outside interference.
Kinetic Phase Inversion Processing
Kinetic Phase Inversion Processing was developed by Caelin Gabriel after years of research into the underlying causes of various effects such as burn-in, wire directionality and the effects of cryogenic treatment. He discovered that there was an underlying core principle that burn-in and cryogenics only partially addressed. Once the governing principle was understood it became possible to create a processor that reduces the need for long burn-in periods and eliminates the effects of cryogenic treatment. Four-days of continuous KPIP™ processing dramatically reduces the sonic ups and downs associated with burn-in, delivering a relaxed and natural presentation.
Specification
Cable Type: PMZ CAT-6a
Conductors: ArNi ®
Dielectric: PTFE
Impedance: CAT 6a compliant
Connectors: Telegartner
CMODE Modules: NA
KPIP Processing: 4-days
Length: 1.50 meters
Safety Assurance:
Continuity and polarity tests – by two technicians
HiPOT tests insulation breakdown @ 1,200 VAC